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Abstract

Statistical evaluation of the results of palaeostress analysis is hindered by the fact that the common fault-slip methods provide incomplete

information about the stress tensor. Our favoured approach to solving this problem involves assigning nominal values to the missing

components of the tensor to subsequently create a normalised palaeostress tensor. The proposed normalised stress is deviatoric and has an

octahedral shear stress of unity. The difference between two normalised tensors can then be expressed by a single parameter, the palaeostress

difference, D. This procedure facilitates the comparison of different palaeostress results, such as those calculated from different sites or those

obtained from different inversion methods applied to the same data. A numerical entity termed the palaeostress tensor average is proposed to

summarise collections of normalised palaeostress tensor results. Following the description of the palaeostress tensor average, end-member

relationships between stress tensors have been used to identify the likely range of values for a proposed measure of dispersion within a

sample of palaeostress tensors. Observations from a Monte-Carlo experiment are used as the basis for determining significant values of the

dispersion measure. The proposed numerical measures may provide another tool to aid the scientific assessment of the interpretations of

current palaeostress inversion solutions.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although a wide range of techniques have been

developed for reconstructing palaeostresses from micro-

structures (Dunne and Hancock, 1994), the methods based

on faults and their associated slip indicators, the so-called

fault-slip methods, are by far the most popular (see

Angelier, 1994; Ramsay and Lisle, 2000, pp. 785–810 for

an exhaustive review). Hundreds of applications of fault-slip

methods are described in the literature; many of these

include regional surveys based on numerous sites (e.g.

Bergerat, 1987; Hardcastle, 1989; Simón, 1989; Gudmunds-

son et al., 1992; Ratschbacher et al., 1993; Bellier and

Zoback, 1995; Peresson and Decker, 1997; Ghisetti, 2000).

Such fault-slip methods treat faults as natural shear stress

gauges, the observed direction of slip being used to indicate

the direction of the resolved shear stress vector that acted on

the plane of the fault.

The field data employed in fault-slip analysis of

palaeostresses consist solely of the orientations of fault

planes and associated slip directions and therefore do not

include information on shear stress magnitudes. For this

reason, the analysis of stresses by stress inversion of these

data does not permit the complete stress tensor, consisting of

six independent quantities, to be determined. Instead, the

results are limited to a reduced tensor (Angelier, 1989,

1994) composed of three variables specifying the orien-

tation of the principal stress axes and a fourth variable, often

called the stress ratio, that expresses the ratio of the

differences between pairs of principal stress magnitudes.

This incomplete nature of the palaeostress tensor

presents problems when different tensors are to be

compared, for example the tensors resulting when one

fault-slip data set is being analysed by two different

inversion methods. There exists presently no objective

way of assessing the difference between two stress

determinations from fault-slip data, though Michael

(1978a,b, 1991) has addressed this issue in relation to

earthquake focal mechanisms. Any assessment based solely

on orientation differences of the principal axes is hampered

by the fact that, depending on the shape of the stress

ellipsoids involved, the axes may not have well defined

directions. For instance, if the stress states being compared
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are of axial compression type (s2 and s3 close in

magnitude), the direction of the principal axis of greatest

compression will be intrinsically more stable than the

directions of the other two principal axes and should be

given greater weight in the comparison. This suggests that a

comparison of two tensors should not be based purely on

their directional attributes but must instead be based upon

all six components of the respective tensors. This preferred

approach is prevented by the incomplete nature of the stress

tensors.

The calculation of an average palaeostress state is

similarly hindered by the fact that fault-slip analyses do

not yield the complete stress tensor. To obtain a description

of the average stress for a region, some workers have

resorted to separately averaging the individual principal

stress directions, even though the mean axes so calculated

do not possess the orthogonality property for principal

directions (Lisle, 1989). Others have calculated variants of

the arithmetic average of the stress ratios for different sites

or methods (e.g. Hardcastle, 1989; Bellier et al., 1997; Orife

et al., 2002).

In this paper, we outline methods for the manipulation of

palaeostress results that circumvent these problems. The

methods involve constructing, for each stress result, a

normalised stress tensor composed of the four components

determined from the stress inversion of fault data and

supplemented by nominal values for the other two

unknowns. This philosophy of substituting nominal values

into the stress tensor is shared by the method described by

Spang (1972) whose data from twinning in calcite yield

estimates of only three components of the stress tensor;

three other components had to be assumed to derive his

numerical dynamic analysis tensor. Tensor differences and

tensor averages are calculated from these normalised stress

tensors.

This contribution is made with the knowledge that

confidence limits for the stress axes inverted are seldom

presented in the reporting of palaeostress solutions.

However, it is our opinion that the observation of a mutual

overlap in the confidence limits for the stress axes (where

this is available) could be a useful qualifier of the difference

between two stress solutions.

2. Components of the stress tensor

The stress tensor, the full specification of the state of

stress at a point, is made up of six independent components.

An alternative way of describing the stress is with reference

to the principal stresses. According to this scheme, three

quantities are required to specify the principal stress values

and three are needed to describe the orientation of the

principal stress axes relative to some geographical reference

frame. The second formulation is advantageous in terms of

ease of visualisation of the stress state. However, for the

stresses estimated by fault-slip methods, this scheme based

on principal stress magnitudes is impractical because these

methods do not permit the individual values of the principal

stresses to be determined. Instead, the methods yield an

estimate of the stress ratio that is a function of all three

principal stresses. Rather than principal stresses therefore,

the following three parameters are a more natural choice for

the description of the magnitude of the palaeostresses

responsible for bringing about slip on faults:

1. Mean stress ( �s). This parameter specifies the average

level of normal stress acting on all potential fault planes.

It governs the frictional resistance on fault planes to slip

and equals the mean of the principal stresses magnitudes:

�s ¼
s1 þ s2 þ s3

3
ð1Þ

2. Octahedral shear stress (toct). This is a measure of the

importance of the deviatoric component of the stress

tensor and hence of the levels of shear stress produced by

the stress state. In contrast to the mean stress this quantity

is responsible for driving the slip on fault planes. It is

defined as the value of shear stress acting on the

octahedral plane, the plane inclined at equal angles

with respect to all three principal stress directions (Nádai,

1937):

toct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 2 s2Þ

2 þ ðs2 2 s3Þ
2 þ ðs1 2 s3Þ

2

3

s
ð2Þ

It is interesting to note that the description of toct in Eq.

(2) shows a remarkable resemblance to equations

formulated for the standard deviation measure used in

the statistical description of dispersion.

3. The stress ratio. The stress ratio, F, is the ratio of

principal stress differences. It controls, for any given

plane, the direction of shear stress and determines the

geometry of the slip on fault planes (Wallace, 1951; Bott,

1959). It is defined (Bishop, 1966; Angelier, 1975) as:

F ¼
s2 2 s3

s1 2 s3

ð3Þ

The stress ratio describes the symmetry of the distri-

bution of the principal stress values. It serves to locate

the intermediate principal stress value within the interval

defined by the maximum and minimum stress values.

Continuing the statistics analogy, the stress ratio there-

fore resembles the skewness measure commonly used to

assess asymmetry.

These chosen parameters ( �s, toct and F ) therefore have a

direct bearing on mechanical and geometrical aspects of

fault-slip yet fulfil the same role of defining the state of

stress as the principal stress values s1, s2 and s3.

Relationships between these six variables are derived in

Appendix A. Fault-slip analysis allows F to be estimated

but provides no indication of the magnitudes of the mean
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stress or of the octahedral shear stresses. Therefore, in order

to construct normalised stress tensors from fault-slip results

we have to assign notional values to these missing

quantities; we assume arbitrarily that �s ¼ 0 and toct ¼ 1

stress unit.

The normalised tensor proposed here is identical to the

‘unit deviator’ defined by Ilyushin (1940) in connection

with plastic deformation in metals. It is given by Nádai

(1950, p. 107) in diagonalized form as:

t21
oct ¼

s1 2 �s 0 0

0 s2 2 �s 0

0 0 s3 2 �s

2
664

3
775 ð4Þ

Since the principal stresses are generally unknown in

palaeostress analysis, this normalised palaeostress tensor is

more usefully expressed in terms of F, i.e.:

k21

2 2F 0 0

0 2F2 1 0

0 0 2ðFþ 1Þ

2
664

3
775 ð5Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F2 2 2Fþ 2

p
(see Appendix A).

An alternative normalisation scheme by Etchecopar et al.

(1981) produces reduced tensors from palaeostress results

by assigning values of s1 ¼ 1 and s3 ¼ 0. This normalises

the tensors in terms of differential stress though this

advantage comes at the expense of a lack of uniformity of

mean stress and octahedral shear stress. Angelier (1994)

discusses other possible forms of the reduced stress tensor.

Details of the computer program that implement the

numerical procedures proposed below are to be published

separately as Lisle and Orife (2002). Copies of the program

are available on request from the authors.

3. Difference between stress results

3.1. Theory

Stress superimposition, or calculating the result of

combining two stress states each represented by a stress

tensor, involves the arithmetic addition of corresponding

components of the respective tensors to produce a new

tensor representing the combined stress. From this basis, it is

a logical step to define the difference between two stress

Fig. 1. Calibration of stress difference parameter, D. Stereograms showing systematic stress difference (D ) variation between a ‘fixed’ stress tensor and a

‘roaming’ stress tensor. See text for further discussion. Fixed tensor is: s1 ¼ 000–00; s2 is vertical; s3 ¼ 090–00; F ¼ 0.1. Polygons on strereograms indicate

stress axes orientation of s1 (or s3 as the case may be) and stress ratio values (F ) for roaming tensors. All stereograms are lower hemisphere equal-area

projections. Orientation details of roaming tensor are detailed below: (a)–(c): s2 is fixed to 090–00. s1 is varied from 000–00 to vertical through 000–30 and

000–60. (d)–(f): s1 is fixed to 000–00. s3 is varied from 090–00 to vertical through 090–30 and 090–60. (g)–(i): s2 is fixed to vertical. s1 is varied from

000–00 to 090–00 through 030–00 and 060–00.
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states as the result of subtraction of the two tensors. The

difference between tensors sA and sB is therefore also a

tensor sD, called here the difference tensor:

sD ¼ sA 2 sB ð6Þ

sD can itself be described by its principal directions,

mean stress, octahedral shear stress, and stress ratio. When

sA and sB are normalised tensors their difference tensor sD

always has �s equal to zero. We propose the magnitude of

the octahedral shear stress (toct) of sD to be an appropriate

measure of the magnitude of the difference between two

palaeostress tensors. This scalar quantity is termed the stress

difference, D.

It can be shown that D is zero where the two tensors are

identical. D achieves a maximum value of 2.0 when

sB ¼ 2sA. These tensors 2sA and sA could be described

as ‘opposites’ in the sense that their s1 and s3 axial

directions are interchanged and their stress ratios are 1 2 F

and F, respectively.

The tensor 2sA, in relation to sA, has been previously

termed the inverse tensor (Nemcok and Lisle, 1995) but in

the language of matrices the term ‘negative’ palaeostress

tensor is more appropriate (Ayres, 1974, p. 2). From

inspection of Eq. (2), we can see that the order in which the

tensors are subtracted from each other (in Eq. (6)) is

unimportant.

3.2. Calibration of the proposed stress difference measure

To gain an appreciation of the significance of different D

values, a calibration exercise was done. The calibration of

the stress difference was based on an experiment that

involved comparing a ‘fixed’ stress tensor with a ‘roaming’

stress tensor that is varied in a systematic way. The

experiment was in essence set up to investigate the

behaviour of the stress difference, D under restricted end-

member conditions. For the sake of simplicity, the stress

tensors are forced to share one common axis whilst the other

two axes as well as the stress ratio of the roaming tensor

were varied. Our observations from this exercise are

summarised in Fig. 1.

The stereoplots of Fig. 1 indicate that as the roaming

tensor is varied in a systematic way, the stress difference

measure (D ) also varies systematically. This measure can

be calibrated by considering the following three cases:

1. Where the tensors are identical (i.e. the tensors are

coaxial and possess identical stress ratios) a D value of

zero is obtained (Fig. 1a, d and g);

2. Where the tensors are most different (i.e. where the

tensors are opposites or ‘negative’ of each other) a D

value of two results (Fig. 1i) and;

3. Where the sum of the stress ratios of both tensors

equal unity and the s1 (or s3) axes are interchanged

with the s2 axis for one of the tensors yielding a D

value of one (Fig. 1c and f).

In addition, Fig. 2 indicates that where coaxial stress

tensors are analysed, the absolute value of stress ratio

difference is a first approximation to the tensor difference

measure D.

From these tests, we conclude that the stress difference D

is a systematic representation of the difference between any

two palaeostress tensors.

3.3. How are D values distributed for randomly selected

pairs of stress tensors?

We undertook an experiment that involved observing D

values determined by analysis of the difference between

random pairs of tensors. The experiment was aimed at

devising qualitative terms to express the difference between

palaeostress tensors and establishing the range of values of

D to be expected from random palaeostress tensors. This

was done in order to explore the usefulness of D as a test

statistic of randomness of palaeostress results.

This Monte-Carlo experiment involved generating

Fig. 2. Scatter-plot of stress ratio difference (absolute) against stress

difference value (D ) for pairs of co-axial stress tensors.

Fig. 3. Frequency histogram of stress difference (D ) values for 1000 pairs

of randomly selected stress tensors.
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randomly 2000 sets of stress axes that are then assigned

a stress ratio (F ) value randomly (thereby constructing

1000 pairs of tensors). These pairs of tensors were then

subjected to the stress difference analysis. Stress

difference (D ) values obtained from this exercise have

been statistically analysed (Fig. 3). In these exper-

iments, D ranges from 0.21 to 1.98 with mean of 1.36,

and a standard deviation of 0.35.

The difference values presented in Fig. 3 have been

subjected to simple tests that suggest that the D values

could have been drawn from a parent distribution that is

approximately normal. Using boundary values based on

an idealised normal distribution, we propose the terms

in Table 1 to qualify the difference measure D. The

boundary values for defining these terms are based on

multiples of the standard deviation that are on either

side of the mean value.

We propose that the D values presented in Table 2 are

used as critical values (i.e. test statistics) for making

decisions regarding the significance of differences between

pairs of tensors. The critical values given in Table 2 can be

used to test the hypothesis that the two tensors concerned are

completely unrelated, as two tensors selected at random

from a population characterised by equal frequency of axial

orientation and stress ratios. This kind of test is illustrated

using the two tensors depicted in Fig. 4. A visual inspection

of Fig. 4 gives the impression that the tensors will differ

greatly. The calculated D value for this pair of tensors is

0.661: they are therefore classified as ‘similar’ (Table 1).

This value is lower than the 5% critical value (Table 2) and

this therefore leads us to reject the hypothesis that the two

are unrelated. Therefore contrary to first impressions the

two tensors do not differ greatly. In other situations, where

the obtained D value is very large, i.e. the tensors are

markedly dissimilar; we are led to reject the hypothesis of

two unrelated tensors.

4. Average palaeostress tensor

4.1. Theory

The specification of palaeostress results in the form of

normalised tensors also permits the averaging of palaeos-

tress results. Analogous to the arithmetic mean of scalar

measurements, the average of n tensors is found by

summation of corresponding components followed by

division by n. Oertel (1981) and Brandon (1995) have

employed the concept of tensor average in relation to finite

strain. In their case too, the tensors concerned are

incomplete necessitating nominal values of missing com-

ponents to be assigned (by assuming no volume change).

After averaging of the normalised stress tensors to

construct the average tensor (denoted for brevity as sM), the

eigenvectors and eigenvalues of sM can then be evaluated to

find the principal stress axes orientations and principal stress

magnitudes, respectively, of sM. It is important to note that

the stress ratio of sM is not equivalent to the arithmetic

mean of the stress ratios of the component stress tensors.

4.2. The significance of the octahedral shear stress of sM

For the sake of brevity in the following discussion, the

tensors that are averaged to construct sM are simply called

Table 1

Terms proposed for a qualitative description of stress difference (D ) between two stress tensors

Qualitative descriptor Statistical definition of range for qualitative descriptor Range of stress ratio (D ) values

Very different Very different . (mean þ 1S.D.) .1.71

Different (mean 2 1S.D.) , Different , (mean þ 1S.D.) 1.01–1.71

Similar (mean 2 2S.D.) , Similar , (mean 2 1S.D.) 0.66–1.01

Very similar Very similar , (mean 2 2S.D.) ,0.66

Table 2

Critical values of stress difference D determined from Monte-Carlo

simulations. These values can be used to test the hypothesis of two random

tensors. Values listed are extreme values of D; values outside this range

would lead to rejection of this hypothesis. See text for further discussion

1% 5% 10% 90% 95% 99%

0.4798 0.6862 0.8791 1.7837 1.8390 1.9464

Fig. 4. Example of data used to calculate stress difference D. Two tensors

are depicted in this stereogram. Lower hemisphere, equal area projection.

Tensor 1 (filled circles): s1 ¼ 336–18; s3 ¼ 128–68; F ¼ 0.08. Tensor 2

(open squares): s1 ¼ 165–02; s3 ¼ 065–19; F ¼ 0.12.
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constituent tensors and the octahedral shear stress of sM will

be denoted by toctM.

Where two tensors are identical, sM will be identical to

the constituent stress tensors. It follows then that toctM will

be exactly equal to the octahedral shear stress of the

constituent tensors (i.e. toctM will be unity as specified in the

normalisation).

Where two tensors that form opposites (i.e. a pair of

tensors consisting of a tensor and its negative) are

summed and averaged, the resulting tensor sM is the

null tensor. It is similarly trivial to show that the

octahedral shear stress of the null tensor (i.e. toctM) is

zero. We can conclude that values of toctM lie in the

range zero to unity. The above conclusion suggests that

the value of toctM is a potential indicator of dispersion

of the constituent tensors that make up sM; high

dispersion (i.e. the constituent tensors are variable in

character) is indicated by low values of toctM.

A Monte-Carlo experiment to elaborate these concepts

was undertaken that involved recording values of toctM

obtained from sample datasets consisting of N randomly

generated constituent stress tensors. For each sample size

(N ¼ 2, 4, 6, 8, 10, 20, 50 100, 1000, 10,000) a thousand

datasets were generated. The experiment was also aimed at

determining what range of values of toctM could be expected

for randomly generated samples of constituent tensors.

From these results, summarised in Table 3, we observe that

the value of toctM decreases as the sample size of the

Table 3

Table of proposed significant values of toctM determined from Monte-Carlo simulations. N ¼ sample size, P ¼ probability that toctM for a randomly generated

sample of stress tensors is less than proposed significant value. See text for further discussion

P N ¼ 2 N ¼ 4 N ¼ 6 N ¼ 8 N ¼ 10 N ¼ 20 N ¼ 50 N ¼ 100 N ¼ 1000 N ¼ 10,000

0.99 0.97492 0.77860 0.66712 0.57982 0.52842 0.40218 0.24172 0.17676 0.07024 0.02211

0.95 0.93083 0.71000 0.59313 0.50712 0.45464 0.33473 0.20547 0.15443 0.06176 0.01783

0.90 0.90253 0.67378 0.56207 0.47909 0.42479 0.30848 0.19223 0.14037 0.05586 0.01638

Fig. 5. Results of stress analysis based on slip-sense inversion. All stereograms are lower hemisphere, equal area projections. Polygons/stars in Fig.4c and d

indicate orientation of s1 and s3 principal stress axes, respectively, for determined sM. See text for further discussion. Poles of faults for data published by

Orife et al. (2002). All faults are normal (N ¼ 12). Frequency histogram of stress ratio (F ) values for compatible stress tensor solutions. Orientations of s1

stress axes for compatible solutions (N ¼ 73).Orientations of s3 stress axes for compatible solutions (N ¼ 73).
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randomly generated datasets increases. This can be

explained by the fact that a large sample of random tensors

will produce an average tensor that approaches an isotropic

tensor.

We propose that toctM values presented in Table 3 are

used as critical values to make decisions regarding the

significance of the toctM values obtained from natural

samples. These values may help indicate preferred orien-

tations and patterns during the analysis of palaeostress

results.

5. Example application of proposed numerical measures

Applications of the numerical procedures proposed can

be illustrated in the context of an analysis of the results of a

stress inversion algorithm first proposed by Lisle et al.

(2001) and later developed by Orife et al. (2002). The stress

inversion criterion that these authors propose is based on the

use of fault slip-sense to determine a range of compatible

tensor solutions. Their method of stress inversion often

yields large numbers of such compatible solutions. Their

preferred method of presenting the inversion results were

stereoplots showing the modal solutions of s1 and s3 stress

axes, respectively, and a frequency histogram of the stress

ratio values for compatible stress tensors. This form of

presentation makes it difficult to compare the results of their

method with those derived from other methods that yield

single tensor solutions. To facilitate such comparisons we

advocate that the potentially large numbers of solutions

compatible with slip-sense data are summarised using the

tensor average tool to aid the numerical manipulation and

presentation of the results. Differences between the resulting

average stress tensor derived from the slip-sense analysis

and the results from other stress inversion methods can then

be analysed using the difference tool.

We present here the numerical measures (D, sM and

toctM) with the qualitative descriptions of D (Table 1) as an

alternative to the preferred methods of Orife et al. (2002) for

displaying the stress tensor results from a slip-sense

inversion. The fault slip sense data (Fig. 5a) have been

presented by Orife et al. (2002) for a stress analysis based on

the slip-sense inversion technique. The original data were

presented by Bellier et al. (1989, fig. 11, site 10.3). We have

re-analysed the published fault slip data of Orife et al.

(2002, their table 2) using different input search parameters

to those which they reported. Plots of compatible s1 and s3

orientations for the re-analysed data were obtained using the

slip-sense inversion technique (Fig. 5c and d). A histogram

of stress ratio values for the compatible solutions is also

presented in Fig. 5b. We present in Fig. 5c and d and Table

4, the orientations of sM determined from the 73 compatible

solutions for the data. A value of 0.639 for toctM was also

determined for these compatible solutions. This value of

toctM was compared with the appropriate values for datasets

of comparable sample sizes presented in Table 3 (where N is

between 50 and 100). The comparison suggests that the

toctM value for the data is not typical of that expected from a

random selection of stress tensors.

To illustrate the application of the stress difference D, we

undertook a comparison between the average stress tensor

for the data determined in the above analysis and the stress

tensors that resulted from two other stress inversion

attempts. One of the stress tensors was determined by

Bellier et al. (1989, table 3) for the original data. The other

stress tensor was also determined for the original data but

using a stress inversion algorithm (INVERS) developed by

Sperner et al. (1993). Although the results of the three

methods intuitively appear to be rather similar (Table 4), we

are now able to present appropriate numerical data to

support the conclusion that the differences between the

various inversion methods are relatively small. In the

terminology proposed above for the qualitative description

of stress difference, we describe the tensors as ‘very similar’

(Table 1). This example also illustrates the difference

between the arithmetic mean of the stress ratio values (in

this example 0.499) and the stress ratio of sM (i.e. 0.34; see

Table 4).

6. Discussion

We do not believe that the examples presented above are

an exhaustive list of the potential applications of the

proposed numerical procedures. Other potential benefits of

robust numerical comparisons (or summaries as the case

may be) of palaeostress results include:

1. The identification of stress perturbations in a region

under investigation. Practically, this could be achieved

by inspecting the differences between an average stress

tensor determined for the regional survey and the tensors

determined for individual sites, and

2. Currently, there is a debate that surrounds the issue of

validity (or otherwise) of palaeostress analysis (e.g. Marrett

and Allmendinger, 1990; Twiss et al., 1991; Cladouhos and

Allmendinger, 1993; Dupin et al., 1993; Pollard et al.,

Table 4

Comparison of stress difference values for three different inversion

algorithms used to analyse fault slip data presented in Fig. 3. sM is the

average stress tensor determined for compatible solutions presented in Fig.

3. Bellier et al. (1989) is the inversion result obtained from original data.

Row marked ‘Program INVERS’ is inversion result for original data from

algorithm based on Sperner et al. (1993) (see text for discussion). Stress

differences (D ) between results of inversion algorithms and sM are

presented under column marked D

Stress analysis s1 s2 s3 F D

sM 085–72 304–14 211–11 0.34 –

Bellier et al. (1989) 098–64 287–26 195–04 0.46 0.331433

Program INVERS 097–71 277–19 007–00 0.429 0.364574
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1993; Twiss and Unruh, 1998; Fletcher and Pollard, 1999;

Marrett and Peacock, 1999; Nieto-Samaniego, 1999;

Tikoff and Wojtal, 1999; Gapais et al., 2000; Peacock

and Marrett, 2000; Pollard, 2000; Roberts and Ganas,

2000). The consistency of palaeostress results may (or

may not) provide arguments for determining the validity

of palaeostress inversion techniques. The numerical

procedures that we propose will assist in the develop-

ment of objective tests for validity of interpretations of

stress inversion solutions.

We urge caution in the interpretation of the average

stress tensor. It remains to be seen how the average stress

tensor relates to the bulk stresses that are applied to a

volume of deforming rock (see Oertel (1981) for equivalent

discussion of strain).

At this time, we are also uncertain about the value of

determining the principal stress axes of the difference

tensor.

7. Conclusions

We have attempted to overcome the problems associated

with numerically processing and the comparison of

palaeostress results, by proposing procedures that express

numerically the difference between two palaeostress results

to produce a quantity termed the stress difference. We also

propose procedures to quantitatively summarise collections

of palaeostress results in the form of an average stress

tensor.

As by-products of these proposed numerical procedures,

we further present qualitative descriptions of the stress

difference values, and we describe a statistical measure to

quantify the dispersion of the palaeostress results used in

determining the average stress tensor.

It is our intention that the power of the proposed

numerical measures will further enhance efforts to exploit

the results of existing palaeostress surveys. Our hope is that

this contribution will encourage further consensus amongst

structural geologists regarding how such surveys may be

improved in the future.
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Appendix A. Principal stress values of the normalised
palaeostress tensor

The normalised stress tensor is defined as having a mean

stress equal to zero and an octahedral shear stress equal to

unity.

Substituting �s ¼ 0 into Eq. (1) gives:

s3 ¼ 2 s1 þ s2


 �
ðA1Þ

Combining this with Eq. (3) gives:

s1 ¼ s2

2 2F

2F2 1

� 
ðA2Þ

s1 2 s2 ¼ 3s2

1 2F

2F2 1

� 
;

s2 2 s3 ¼ 3s2

F

2F2 1

� 
;

s1 2 s3 ¼ 3s2

1

2F2 1

� 
:

Substituting into Eq. (2) and setting toct ¼ 1 gives:

s2 ¼
2F2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2F2 2 2Fþ 2
p ðA3Þ

From Eq. (A2):

s1 ¼
2 2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2F2 2 2Fþ 2
p ðA4Þ

and from Eq. (A1):

s3 ¼ 2
Fþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2F2 2 2Fþ 2
p ðA5Þ

Though F is the most popular, the stress ratios below are

used by different authors. These other stress ratios can be

converted to F using:

R (Carey and Mercier 1987) ¼ ðs0
2 2 s0

1Þ= ðs0
3 2 s0

1Þ ¼

ðs1 2 s2Þ=ðs1 2 s3Þ

i.e. deviatoric stresses F ¼ 1 2 RC

R (Lisle, 1980) ¼ ðs2 2 s3Þ=ðs1 2 s2Þ; F ¼ RL=ð1 þ

RLÞ

m (Nádai, 1950, p. 106) ¼ ð2s2 2 s1 2 s3Þ=ðs1 2 s3Þ;
F ¼ ðmþ 1Þ=2
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Géotechnique 16, 91–128.

Bott, M.H.P., 1959. The mechanics of oblique slip faulting. Geological

Magazine 96, 109–117.

Brandon, M.T., 1995. Analysis of geologic strain in strain-magnitude

space. Journal of Structural Geology 17, 1375–1385.

Carey, E., Mercier, J.L., 1987. A numerical method of determining the state

of stress using focal mechanisms of earthquake populations: appli-

cations to Tibetan teleseisms and microseismicity of S Peru. Earth and

Planetary Science Letters 82, 165–179.

Cladouhos, T.T., Allmendinger, R.W., 1993. Finite strain and rotation from

fault-slip data. Journal of Structural Geology 15, 771–784.

Dunne, W.M., Hancock, P.L., 1994. Palaeostress analysis of small-scale

brittle structures. In: Hancock, P.L., (Ed.), Continental Deformation,

Pergamon, Oxford, pp. 101–120.

Dupin, J.M., Sassi, W., Angelier, J., 1993. Homogenous stress hypothesis

and actual fault slip: a distinct element analysis. Journal of Structural

Geology 15, 1033–1045.

Etchecopar, A., Vasseur, G., Daignieres, M., 1981. An inverse problem in

microtectonics for the determination of stress tensors from fault

striation analysis. Journal of Structural Geology 3, 51–65.

Fletcher, R.C., Pollard, D.D., 1999. Can we understand structural and

tectonic processes and their products without appeal to a complete

mechanics? Journal of Structural Geology 21, 1071–1088.

Gapais, D., Cobbold, P.R., Bourgeois, O., Rouby, D., de Urreiztieta, M.,

2000. Tectonic significance of fault-slip data. Journal of Structural

Geology 22, 881–888.

Ghisetti, F., 2000. Slip partitioning and deformation cycles close to major

faults in southern California: evidence from small-scale faults.

Tectonics 19 (1), 25–43.

Gudmundsson, A., Bergerat, F., Angelier, J., Villemin, T., 1992.

Extensional tectonics of southwest Iceland. Bulletin de la Société
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